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Abstract. A social vulnerability evaluation of storm surges is important for any coastal city to commence in order to provide

marine  disaster  preparedness  and  mitigation  procedures  and  to  formulate  post-disaster  emergency  plans  for  coastal

communities. This study establishes an integrated evaluation system of social vulnerability by blending a variety of single

evaluation methods, applying the idea of combination weighting and calculating the social  vulnerability index of storm

surges. Shenzhen, with a current reputation of having the most economic development potential and a representative city in

China,  is chosen to evaluate its  social vulnerability to storm surges  via a historical social and economic statistical dataset

spanning from 1986 to 2016. The research extends further by analyzing the city’s temporal variability. Results reveal that

social vulnerability keeps almost constant from 1986–1991 and 1993–2004, while it decreased sharply in the remainder of

times to show a  ‘stair-type’ declining curve over the past 30 years. Resilience is progressively increasing by virtue of a

continuous increase in  medical  institutions,  fixed asset  investments and  salary levels of employees.  These determinants

contribute to the overall downward trend of  social vulnerability for Shenzhen. Exposure and sensitivity increased slowly

with some fluctuation, causing the changes of social responsibility to transpire.
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1 Introduction

Storm surge, which refers to the abnormal volumetric rise of sea water layered above the astronomical tide due to severe

meteorological conditions experienced through transitioning low-pressure weather systems such as tropical and extratropical

cyclones,  ranks near  the pinnacle among marine natural  hazards  in  terms of  historical  counts of  human casualties  and
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expensive infrastructure losses. As a naturally occurring phenomena, storm surge is a major contributor to coastal disasters

and has significant ability to disrupt communities, impair transportation systems, impact prosperous economic zones and

reach record-achieving damage levels. Most of the world's major coastal disasters caused by tropical cyclone activity are

produced by their storm surge, such as Hurricane Sandy (2012), Typhoon Haiyan (2013), Cyclone Nargis (1972), Hurricane

Harvey (2017), Hurricane Irma (2017), the Bhola Cyclone (1970), and Hurricane Katrina (2005). To curb the escalating

losses and casualties from storm surge incidents and achieve sustainable development, it is urgent for governments whom

control coastal areas to carry out disaster prevention and reduction activities.

     The occurrence of marine natural hazards not only depends on the hazards themselves but also on the theory of urban

exposure and vulnerability (Dwyer et al., 2004; Peduzzi et al., 2009; Ellis, 2012; IPCC, 2012). Therefore, it is necessary to

build detailed research involving human impacts and the positive effects when facing marine natural hazards (Cutter, 2003a).

Risk assessment to tropical cyclone-induced storm surge provides the basis for risk mitigation and related decision making

(Lin et al., 2010). A comprehensive disaster risk assessment requires a more rational distribution of efforts created in areas

such  as  disaster  reduction  and  disaster  management.  Disaster  reduction  should  be  regarded  as  a  new  dimension  of

development rather than simply focused on post-disaster responses (Zheng et al., 2012). Whether the risk of a disaster is

initiated by weather, climate or hydrological events, it can propagate into a realistic problem and depends largely on specific

physical, geographical and social conditions (Sun et al., 2009; Yin et al., 2012). Vulnerability has become one of the central

elements of sustainability research (Turner et al., 2003a). Understanding, measuring, and reducing vulnerability has been one

of the most important priorities in the transition to a more sustainable world (Birkmann, 2006). In comparison to other

coastal disasters, there are few studies on the vulnerability of storm surge. An ability to effectively evaluate the vulnerability

of storm surges is of great significance for reducing this type of marine natural hazard.

     At present,  there is  still  no universal  definition and concept of  vulnerability,  though it  is  generally defined as the

possibility, degree, or state of the system being damaged (Huang et al., 2012). It is widely understood that vulnerability is an

inherent attribute of the system, and the state of the exposure factors in the risk of damage is the core characteristic of

vulnerability (Cardona, 2004).

     However, views of the components of vulnerability vary among disciplines and research areas (Dow and Downing, 1995;

Cutter, 1996; Janssen et al., 2006). Based on the theory of sustainable development and the perspective of disaster economics

(Turner et al., 2003b), it is suggested that analyzing the ability of an entire system in order to prevent and resist disasters and

the ability to repair after a disaster, identifies the vulnerability of a system. In the field of climate change, vulnerability refers

to the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate

variability and extremes (IPCC, 2012). Vulnerability is defined to be a function of the character, magnitude and rate of

climate variation to which a system is exposed, its sensitivity, and its adaptive capacity (McCarthy et al., 2001; Adger, 2006).

     The existing vulnerability studies can be divided into biophysical vulnerability, social vulnerability and an integrated

vulnerability (Cutter,  2003a;  Schmidtlein et  al.,  2008;  Clare and Weninger,  2010).  Biophysical  vulnerability refers  to  a

certain amount of (potential) loss of a system caused by a particular climatic event or hazard, which can be measured
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quantitatively by a series of indicators such as human death, production cost loss and ecosystem loss (Jones and Boer, 2005).

While social vulnerability places more emphasis on its social connotation, focusing on the analysis from the perspective of

the characteristics of a person or group in terms of their capacity to anticipate,  cope with, resist, and recover from the

impacts of a natural hazard is important (Dwyer et al., 2004; Wisner et al., 2004; Zhang and You, 2014). Social vulnerability

is partially the product of social inequalities and is a function of the demographics of the population as well as more complex

constructs, such as healthcare, social capital, and access to lifelines (Cutter and Emrich, 2006). The social and biophysical

vulnerabilities  interact  to produce the overall  place vulnerability (Cutter,  1996).  However,  vulnerability is  also strongly

influenced by a society's dependence on infrastructure such as roads, utilities, airports, railways, and emergency response

facilities (Aerts et al., 2014; Bevacqua et al., 2018). It’s important to note that while reducing exposure and vulnerability may

considerably reduce flood damage and entail lower investment costs, they do not prevent flood waters from entering any

coastal city (Cutter et al., 2000).

     In the past, considerable research attention has been paid to components related to biophysical vulnerability, but relatively

few studies have been carried out on social vulnerability before 1990 due to the fact that quantifying social vulnerability has

higher complexity than biophysical vulnerability (Mileti, 1999). However, with more devastating disasters happening, large

losses of life and property have brought up the attention on the role of social vulnerability in the occurrence of severity of

disasters  (Zhou  et  al.,  2014).  People  began  to  realize  that  simply  understanding  the  characteristics  of  biophysical

vulnerability is not enough to analyze the losses caused by disasters and the ability to quickly recover from the disasters

(Schmidtlein  et  al.,  2008).  The  evaluation  of  social  vulnerability  is  thought  to  be  an  important  step  in  disaster  risk

management (Wisner et al., 2004; Cutter and Finch, 2008). It is necessary for governments to analyze the social vulnerability

of coastal cities in order to build policies for distributing relief funds and assist the region to improve its capabilities against

coastal disasters (Wei et al., 2004). Thus a considerable body of research on social vulnerability has emerged as a component

of studies in disaster reduction in the last decade (Cutter, 2003a; Cutter and Emrich, 2006; Schmidtlein et al., 2008).

     There is importance in analyzing social vulnerability of storm surges in Shenzhen, China (Fig. 1c) during 1986–2016 for

four main reasons. First, there has been little assessment of social vulnerability to storm surges where Shenzhen is the focal

point. Therefore, by furnishing a detailed and comprehensive screening of social vulnerability to storm surges in Shenzhen,

the research provides a buffer against disaster risk and allows the city’s government to plan for a more sustainable future.

Also, the  statistical methods and concepts used in this research can be adapted to other coastal cities with similar situations

in different geographic regions and for several types of marine natural hazards. Secondly, due to the reform and openness

that starting in 1979, Shenzhen has led to an expedited process of rapid urbanization and socioeconomic development during

the study period. In choosing Shenzhen, the scenario is a typical case of observing how social vulnerability changes with the

extensive  progress  of  a  highly capable  city.  Third,  research  involving  vulnerability  to  disasters  are  mainly  focused  on

discussing the spatial distribution of vulnerability, as well as comparing the differences between various geographic areas

and development levels. A composite social vulnerability index (SVI) for Chinese coastal cities was developed by integrating

17 indices from three aspects (i.e. exposure, sensitivity and adaptive capability) that shaped the social vulnerability of urban
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society to hazards and analyzed the differences of vulnerability of different areas (Su et al.,  2015). A data envelopment

analysis  (DEA)  model  was  used  for  regional  vulnerability  evaluation  of  natural  disasters  in  China  and  discovered  a

significant negative correlation between the level of vulnerability and the economic level of the region (Huang et al., 2011).

Five methods for combined evaluation were used by Liu and Liu (2017) and results determined that Yantai city (Binzhou

city) had the highest (lowest) vulnerability, respectfully, among seven coastal cities selected for evaluation in Shandong

Province. The socioeconomic vulnerability to typhoon-induced storm surges for municipal districts of Guangdong Province

using  the  fuzzy  comprehensive  evaluation  was  assessed  and  it  was  determined  that  vulnerability  presented  spatial

heterogeneity to a large degree (Zhang et al., 2010). Research focused on the risk assessment of typhoon disasters in China’s

coastal areas by Niu et al. (2011) and research on the regional vulnerability of storm surge disasters by Yuan et al. (2016) led

to similar conclusions with results from Zhang et al. (2010). However, the social vulnerability to storm surges contains both

spatial and temporal differences. It is of significant value to observe the changes of social vulnerability over years for one

prone coastal  city by identifying factors contributing to large impacts on social vulnerability,  which in return, becomes

beneficial for generating disaster prevention and mitigation policy.

     Thus, the purpose of our study is to quantitatively explore the temporal patterns of social vulnerability to storm surges in

Shenzhen from a macroscopic angle. Based on the postulation put forward by Turner et al. (2003a), social vulnerability in

our study is divided into three aspects: (i) exposure, (ii) sensitivity and (iii) resilience, so we can inspect the results from

different perspectives.

2 Materials and methods

2.1 Study area

Shenzhen is a metropolitan city attributed to the highest per capita Gross Domestic Product (GDP) in mainland China and its

economic aggregate is equivalent to a medium-sized Chinese province. Since its establishment in 1979, Shenzhen has gone

through tremendous advancement in just 40 years by virtue of political reform and a more open environment.

     However, Shenzhen is also faced with many coastal disasters that threaten its sustainable development due to its location

at the coast of the Pearl River Delta (Fig. 1a,b) and is adjacent to the northern part of the South China Sea (Fig. 1b,c), among

which, disasters caused by storm surges are the most serious. According to the Shenzhen Marine Disaster Emergency Plan

(2017) [http://www.sz.gov.cn/ytqzfzx/yingji/yjya/201712/t20171206_10111758.htm (last access: 30 June 2019)], there have

been 260 typhoons affecting the coastal areas of Shenzhen since 1949, with an average of 4.06 typhoons per year. Among

them, 116 typhoons seriously affected the adjacent sea area around Shenzhen with an average of 1.81 typhoons per year,

especially typhoons landing in the coastal areas, causing the greatest impact to the city limits (Fig. 1c, crimson color coding).

13 typhoons have made landfall directly on Shenzhen’s coastline and the strongest system was Typhoon “7908”. Typhoon

“7908” made landfall at the end of July 1979, which caused the storm surge elevation at Red Harbor to reach 1.12 m. On a

broader perspective, the highest storm surge level ever recorded in China occurred with Typhoon “8007”. Typhoon “8007”
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made landfall in July 1980 and generated a 5.94 m surge at Nandu Tide Gauge in Leizhou, China, a tide gauge notable for

recording four out of the six highest water levels from coastal flooding situations (Liu and Wang, 1989; Ma, 2003; Zhang,

2009; Needham et al., 2015). The frequency of storm surges has caused more economic and social losses in Shenzhen each

year. Therefore, it is valuable to commence a risk assessment and develop an early warning system for Shenzhen in order to

protect a particularly susceptible area from future storm surges.

2.2 Data sources

The data used to evaluate the social vulnerability of storm surges in Shenzhen is fully contained in Shenzhen Bureau of

Statistics,  Shenzhen Investigation Team of National  Bureau of  Statistics  (2017),  which was compiled by the Shenzhen

Statistical Bureau and a Shenzhen–based investigation team of the National Bureau of Statistics, and published (updated

annually) by the Shenzhen Statistical  Bureau. Therefore,  the instantaneity and reliability of this data are acceptable for

research  purposes.  This  yearbook  comprehensively  and  systematically  introduces  the  national  economy  and  social

development of Shenzhen, and the indicators reflect the achievements made by Shenzhen in all aspects of economy and

society in 2016, as well as the statistical data of the city since its establishment. The statistical data consists of 19 parameters,

listed as: (i)  synthesis,  (ii)  national  economic accounting, (iii)  population and labor force,  (iv) industry and energy, (v)

construction industry, (vi) transport and post and telecommunications, (vii) agriculture, (viii) investment in fixed assets, (ix)

real  estate  development,  (x)  commerce  and  prices,  (xi)  financial  revenues  and  expenditures,  (xii)  financial  insurance

industry,  (xiii)  foreign  economic  trade  and  tourism,  (xiv)  labor  wages,  (xv)  science  and  technology,  (xvi)  culture  and

education, (xvii) health, social security and social welfare, (xviii) urban construction and environmental protection, and (xix)

people's livelihood. Due to the absence of statistical data of some important indicators, this study is limited to use a partial

statistical dataset between 1986 and 2016 with respect to data integrity.

2.3 Research methods

At present, the evaluation of social vulnerability is still  in an exploratory stage and the theoretical frameworks used in

various fields are dissimilar, such as the hazards of place (HOP) model (Cutter, 1996) and the Vulnerability Framework for

Sustainability  Science  (VFSS)  model  (Turner  et  al.,  2003a),  etc.  Currently,  the  unified  evaluation  model  has  not  been

completely established (Zhou et al., 2014). Based on these frameworks, the existing social vulnerability assessment methods

can be divided into three kinds: (i) based on an indicator system (Su et al., 2015), (ii) based on historical disaster loss (Sun et

al., 2009), and (iii) based on a vulnerability curve. This paper adopts the first assessment method and is based on the SVI

evaluation framework proposed by Cutter (1996), which is comprised of calculating the SVI to measure the vulnerability

level of a region by selecting the indicators related to the social vulnerability of that region (Cutter, 1996).  The evaluation

indicator system of disaster vulnerability is composed of two parts: (i) the indicator system and (ii) the indicator weight. The

indicators reflect the characteristics of the evaluation objects and their internal relations while the indicator weight reflects

the importance of the indicator to the evaluation results and is an essential part of the construction of the evaluation system
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(Yang and Li, 2013). At present, the methods used to determine the weight of evaluation indicators can be divided into two

categories: (i) subjective weighting method and (ii) objective weighting method. The former is dominated by the expert

grading method (Liu et al., 2002; Wang et al., 2003), while the latter encompasses several research methods, including AHP

(Lu, 2008; Shi et al., 2008), PCA (Zhang and You, 2014), data fusion algorithms and the comprehensive analysis method

(Liu and Liu, 2017). Among them, the comprehensive analysis method refers to the combination of two or more single

evaluation methods to determine the indicator  weight,  which enhances the objectivity  and rationality of  the evaluation

results.

     Based on the above predecessors' research, this study constructed a set of basic procedures for calculating the SVI of

storm surges in Shenzhen (Fig. 3). Firstly, the construction of an optimized social vulnerability evaluation indicator system,

based on the idea of rough set theory, is completed. Second, the entropy method, the  Technique for Order Preference by

Similarity to an Ideal Solution (TOPSIS) method and the coefficient of variation method are used to weigh the indicators and

aggregate SVI separately.  Then,  the consistency of  different  evaluation results  is  tested by using the compatibility test

method, i.e., Kendall consistency test. When all the above evaluation methods pass the consistency test, the combination

weighting method strategy is used to determine the weight of each evaluation method. Finally, the combined evaluation

results are achieved and have significant advantages over all evaluation methods due to calculating the weighted evaluation

value of each evaluation method.

2.3.1 Designing an indicator system of social vulnerability

The analysis of the connotation and extension in the concept of vulnerability evaluation for a storm surge-bearing body is

based on a theoretical framework. Next, the evaluation indicators are preliminarily selected based on the perspective of

exposure,  sensitivity and resilience and the indicator designing principles of science, system, dominance, comparability,

quantifiability, operability and dynamics. Finally, the evaluation indicators are screened and the optimal evaluation index

system is constructed by using the knowledge simplicity attribute of rough set.

     Among them, rough set theory is a soft computing technique proposed by Z. Pawlak for handling vague, inconsistent and

uncertain data (Das et al., 2018). The main idea is to remove redundant or unimportant attributes according to specific rules

on the premise of keeping the classification ability of knowledge base unchanged (Wu and Tang, 2019).  This method can

undertake in-depth analysis and reasoning of data, simplify the data, and obtain knowledge on the premise of preserving key

information, identify and evaluate the dependencies between the data, and finally, reveal the potential regularity from the

data (Pawlak,  1998;  Pawlak  and  Skowron,  2007). Rough  set  is  defined  in  terms  of  a  pair  of  sets,  namely  lower

approximation  and  upper  approximation  of  the  original  set.  Indiscernibility  relations  and  set approximations  are  the

fundamental concepts of the rough set theory (Pawlak, 1982; Swiniarski, 2001).
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2.3.2 Social vulnerability index

In order to enhance the reliability of the social vulnerability evaluation results, it is inadvisable to apply only one evaluation

method.  Therefore,  this  paper  will  use  the  entropy,  TOPSIS  and coefficient  of  variation  methods  to  weigh  the  social

vulnerability indicators and aggregate SVI, respectively. When the calculation results of all above evaluation methods pass

the Kendall consistency test, their combined evaluation results based on the combination weighting method strategy  are

achieved. The results under a single evaluation framework will be further investigated.

2.3.2.1 Entropy method

In information theory, entropy is a measure of uncertainty. The greater the amount of information, the smaller the uncertainty

and the smaller the entropy. According to the characteristics of entropy, we can determine the randomness and disorder

degree of an event by calculating the entropy value, or the entropy value can be applied to judge the dispersion degree of an

indicator. The greater the dispersion degree of an indicator, the greater the influence of this indicator on the comprehensive

evaluation (Skotarczak et al., 2018). Therefore, the weight of each indicator can be calculated according to the variation

degree of each indicator, using information entropy as a tool to provide the basis for a comprehensive evaluation of multiple

indicators (Zhou and Yang, 2019).

Procedure I

 Step 1: Select n years and m indicators.

 Step 2: Calculate the proportion of the indicator (rij) value of item j in year i:

r ij=
r ij

∑
i=1

n

r ij

  ,                                                                                                                                                                    (1)

 Step 3: Calculate the information entropy (e) of the indicator j:

e j=− (lnn )− 1∑
i=1

n

r ij (lnn )   ,                (2)

where, 0≤ e j≤ 1  and j= {1,2,3, .. . ,m } .

 Step 4: Calculate the utility value of the indicator j:

d j=1− e j    ,                                (3)

 Step 5: Calculate the weight of the indicator j:

7

200

205

210

215

220

https://doi.org/10.5194/nhess-2019-293
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



u j=
d j

∑
j=1

n

d j

  ,                                         (4)

 Step 6: Obtain the final evaluation value by weighted summation of each indicator. 

2.3.2.2 TOPSIS method

The TOPSIS method, namely the solution distance method, was first proposed by C.L. Hwang and K. Yoon in 1981  (Kuo,

2017). TOPSIS is a common multi-indicator and multi-objective decision analysis method, which has been widely applied to

the evaluation of multivariate analysis (Wu and Chen, 2019). Its core idea involves sorting the proximity of a limited number

of evaluation objects to idealized targets by measuring the distance of the positive ideal solution and negative ideal solution,

and then realize the evaluation of each object relative merits (Lu et al., 2011).

     The  TOPSIS  method  can  be  divided  into  six  steps,  which  are:  (i)  construct  the  original  data  matrix,  (ii)  data

standardization processing, (iii) determine the indicator weight using the entropy method, (iv) calculate the positive and

negative ideal values, (v) calculate the distance from each evaluation indicator to the positive and negative ideal value, and

(vi) calculate the relative proximity between the evaluation object and the optimal value (Zhang and You, 2014).

2.3.2.3 Coefficient of variation method

A comprehensive evaluation is carried out through multiple indicators. If the actual value of a certain indicator can clearly

distinguish each sample, it means the indicator possesses rich resolved information about this evaluation. Therefore, in order

to improve the discrimination validity of a comprehensive evaluation, the idea of the coefficient of variation method is to

assign weights to all the evaluated objects according to the variation degree of the observed values of each indicator (Zhou et

al., 2004). Indicators with large variation of the observed values indicate that the schemes or indicators can be effectively

divided, and a larger weight should be given, otherwise a smaller weight would be justified (Zhao et al., 2013). The variation

information of indicators is measured by its variance, but the variance of indicators is not comparable due to the influence of

the dimensions and order of magnitude of each indicator. Therefore, the comparable indicator variation coefficient should be

selected and the weight of each indicator can be obtained by normalizing its coefficient of variation (Gupta and Gupta,

2016).

Procedure II

 Step 1: Suppose there are n participating samples, each of which is described by p indicators. Calculate the mean value

X avg  and variance S i
2  of each indicator.
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X avg=
1

n∑ X ij

 ,                                           (5)

S i
2= 1

n −1∑ ( x ij − X avg )2
 ,                                                                     (6)

 Step 2: Calculate the coefficient of variation of each indicator.
V i=Si / X avg  ,                                                                     (7)

where, i= {1,2,3, .. . ,p } .

 Step 3: Obtain the weight of each indicator by normalizing the coefficient of variation.

W i=
V i

∑V j

 ,                                                          (8)

where, j= {1,2,3, .. . ,p } .

 Step 4: Obtain the final evaluation value by weighted summation of each indicator.

2.3.2.4 Kendall consistency test

Due to limitations of the various methods, different single evaluation methods have distinct conclusions. However, as long as

the evaluation criteria are consistent, the result of grade classification is reasonable. The Kendall consistency test is a method

to test whether the results of each single evaluation method are consistent (Wen and Hu, 2002).

W=
∑
i=1

n

(R i−
m (n+ 1 )

2 )
2

m2 n ( n2− 1 )/12

 ,                  (9)

where, W is the Kendall's coefficient of concordance, m is the number of evaluation methods used, n is the year participated

in the evaluation, and Ri  is the rank sum of year i. The numerator in Eq. (9) is the sum of deviation squared between the

total rank and the total rank of all samples, and n (n2 −1 )/12  in the denominator is the sum of total deviation squared

(total sum of squares) of all ranks.

     The closer W is to 1, the greater the difference between the rank groups, wherefore there is a significant difference in the

scores of the years involved in the evaluation and further indicates that the evaluation criteria of different methods are

consistent. On the contrary, the closer W is to 0, the more inconsistent these methods are in their evaluation criteria.
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2.3.2.5 Combination weighting method

In a single evaluation system, the results may possess slight one-sidedness differences, which will affect the accuracy and

feasibility of the evaluation. By combining the evaluation results of multiple evaluation methods helps to safeguard the

objectiveness of the evaluation results.

     A weight combination strategy normalizes the weight of a single method vector by using dispersion maximization

combined  with the  weighting method in Eq.  (10)  and  provides  combination  weight  coefficients  of  singular  evaluation

methods.  The  combination  weight  of  each  indicator  is  obtained  by  using  the  combination  calculation  formula:

ωs=θ1
✶ω1 s +θ2

✶ω2 s+. ..+θn
✶ωns , where θn

✶  is the weight of a single evaluation method,  ωjs  is the weight

value of indicator s under method j ( j= {1,2, .. . ,n } ), and ωs  is the final weight. In the following formula (Eq. 10),

f ij , f tj  are evaluated values of objects i and t under each single evaluation method (j), and θ j
✶  is the weight of a

single evaluation method ( j= {1,2, .. . ,n } ):

θ j
✶=

∑
i=1

m

∑
t=1

m

|f ij − f tj|

∑
j= 1

n

∑
i=1

m

∑
t=1

m

|f ij − f tj|
 ,                 (10)

2.4 Indicator system of social vulnerability evaluation

By analyzing the factors contributing to social  vulnerability,  a set of more than 100 evaluation indicators was obtained

(Fischer et al., 2002; Wisner et al., 2004; Zhou et al., 2014; Yuan et al., 2016). The evaluation indicators were then simplified

using rough set theory.

     As for  storm surges accompanied by tropical and extratropical cyclones that Shenzhen faces on a regular basis, this

research screens an algorithm without considering the effects of man-made physical barriers and coastal defense systems

such as seawalls, revetments, floodgates and dams. The algorithm screens for classifying disaster  bodies that reflect the

social economy of the study area and screens for determining key attributes that can affect the exposure of various disaster

bodies. As for the exposure of a disaster body, this research selects key indicators that are highly accessible and can reflect a

disaster-stricken area at  a  macro level.  Then,  the evaluation indicators  are selected based on aspects  of  the population

structure and industrial structure to reflect the sensitivity of a disaster body. Evaluation indicators are selected from aspects

such as fiscal expenditures, resident income, and infrastructure construction to reflect the resilience of a  disaster body’s

social and economic system. Table 1 shows a total of 16 evaluation indicators selected after repeated screening in which the
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Grade I indicators identify with the three component of vulnerability and the Grade II indicators identify with the branches

of the Grade I indicators.

2.4.1 Exposure indicators

The indicators of exposure reflect the damage of an inundation area, including its population and social economy. Among

them, the permanent resident population at the end of the year reflects the population exposure. The higher the population,

the higher the number of people exposed to natural disasters, and the relative high level of vulnerability. While regional GDP

measures economic exposure, a relative high level of economic development equates to a more vulnerable area for  storm

surges due to the aggregation of public property (e.g. shopping centers, office buildings, etc.) built upon the area compared

to underdeveloped locations. The total area of crops, fishery output value and port cargo throughput are indicators directly

exposed to the impact of  storm surges. In flooded areas, crops are damaged, fishery resources are affected and the port

cannot operate normally.

2.4.2 Sensitivity indicators

Sensitivity  indicators  reflect  the degree of  sensitive of  a  disaster  body.  Primary industries  include agriculture,  forestry,

fishery,  animal  husbandry  and  collection.  The  operation  of  these  industries  is  sensitive  to  fluctuations  of  the  natural

environment and the occurrence of storm surges will directly affect the output of these industries. When storm surges occur,

surface meteorological conditions are harsh and often accompanied by higher winds and precipitation patterns, which causes

the city traffic to become inconvenient and prone to accidents.  As vulnerable groups in society,  students at school and

women are more likely to suffer casualties outside. Meanwhile, social workers generally work outdoors with relatively high

risk of being injured and their awareness of disaster prevention and reduction is relatively low due to limited knowledge of

the general population, leading to increased sensitivity of storm surges within the entire region.

2.4.3 Resilience indicators

In contrast to exposure and sensitivity, resilience is a negative indicator with which relatively high resilience in a region is

equivalent  to a  relative low vulnerability.  The resilience indicators  selected for  this research can be divided into three

aspects, namely (i) fiscal expenditures, (ii) resident income and (iii) infrastructure construction. Fiscal expenditure levels

mainly reflect on the general public budget expenditures and urban fixed asset investments. The higher the public budget

spending, the more money is devoted into social management and infrastructure construction. Urban fixed asset investments

include many infrastructure projects such as railways, water conservancy, roads, airports, pipelines and power grids. The

higher the urban fixed asset investment values, the more complete the regional infrastructure construction is for a particular

region. Therefore, with an increase of fiscal expenditures, the infrastructure construction is more complete and the ability to
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prevent and resist disasters, along with resilience after being damaged, is substantial. The level of residential income can be

divided into (i) per capital disposable income of urban residents and (ii) the average annual salary of employees. With a

relatively high income level of residents and relatively higher living standard, the disaster resilience of the area becomes

stronger and the recovery capacity is faster after the disaster. The level of infrastructure construction mainly refers to the

level of medical and health care, including the number of medical and health institutions, the number of beds in medical and

health institutions and  the  number  of  health  employees.  All  of  these  values  are  positively correlated  with the  medical

treatment level of the victims.

3 Results and discussion

3.1 Variation characteristics of social vulnerability

Based  on  the  constructed  evaluation  indicator  system  along  with  detailed  and  reliable  statistical  data  and  combined

weighting results, the annual  SVI of Shenzhen between 1986 and 2016 is  obtained and the changing characteristics and

influencing factors of  social  vulnerability will be discussed. According to previous studies on disaster vulnerability,  social

vulnerability to storm surges discussed in this research can be approximately divided into (i) high vulnerability, (ii) relatively

high  vulnerability,  (iii)  moderate  vulnerability,  (iv)  relatively  low  vulnerability  and  (v)  low  vulnerability  and  the

corresponding critical points of SVI are 0.5873, 0.5163, 0.4452 and 0.3741, respectively (Yuan et al., 2016).

     According to calculated results, three kinds of single evaluation methods share close weight coefficients, and the weight

coefficients of the entropy method is the highest (Table 2). These results closely reflect a similar overall trend except for

slight differences in numerical values. The combination of all three weighted values can be considered as a valid reflection

of regional social vulnerability and used within the actual social vulnerability analysis.

3.1.1 Interannual variation

As  shown  in  Fig.  4,  the  curve  of  weighted  SVI illustrates a  significant  downward  trend  in  entirely  with  noticeable

fluctuations. SVI shows a slight upward trend between 1986–1991 and 1996–2004 and shows a significant downward trend

for the remaining years  as  the rate  of  decline  is greatest  within 2014–2016. According to  classification criteria,  social

vulnerability  to storm surges in Shenzhen  during the entire study period can be divided into four stages: (i) high  social

vulnerability between 1986 to 1992, (ii) relatively high  social  vulnerability between 1993 to 2008, (iii)  moderate  social

vulnerability between 2009 and 2014, and (iv) relatively low social vulnerability between 2015 and 2016. The time to

maintain relatively high (low) social vulnerability is the longest (shortest) as a whole, respectively.
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3.1.2 Interdecadal variation

The interdecadal changes of social vulnerability are also significant. Since 1986, each decade is a cycle which has a step–

down  trend,  and  the  derivative  of  the  third  step  is  the  largest.  By  evaluating  and  classifying  social  vulnerability

quantitatively, it is discovered that  social  vulnerability has been decreasing consistently during the research period. This

discovered trend relates to Shenzhen’s enhanced ability to withstand losses and reconstruct after substantial damage when

confronted with storm surges. The reasons for this trend has to be analyzed by the standpoints of exposure, sensitivity and

resilience.

3.2 Reasons for vulnerability changes

Fig.  5 depicts the corresponding index of exposure,  sensitivity and resilience. It  is important to note that  exposure and

sensitivity belong to benefit indicators which means the larger the EI and SI, the higher the exposure and sensitivity. While

resilience possesses opposite attributes as a cost indicator, meaning the larger the RI, the lower the resilience.

     The results show that exposure, sensitivity and resilience are increasing over time, as the growth rate in turn is resilience

>  exposure  >  sensitivity,  which  reflects  that  Shenzhen’s  social  and  economic  exposure,  sensitivity  of  population,  and

industrial  structures  have increased inevitably,  but  simultaneously.  Shenzhen’s  fiscal  spending, residents’ income levels,

completion degree of medical conditions, and infrastructure exponentially improved.

3.2.1 Analysis of resilience changes

According to the evaluation results, a continuous increase of resilience is the most significant, which is mirrored by the

continuous decrease of RI (Fig. 5). Resilience is closely related to the level of regional social and economic development.

The  remarkable  pace  of  Shenzhen  has  greatly  promoted  the  city’s  development  in  just  thirty  years  which  leads  to  a

continuous growth of all resilience indicators. Therefore, the growth of resilience in Shenzhen is overt.

3.2.2 Analysis of exposure and sensitivity changes

EI remains almost flat during the period of 1986 to 1991 and continues to grow since 1996 but presents a slight drop between

1992 to 1996. According to the statistical data combined with the city’s historical situation, Shenzhen transformed from a

small fishing village to grids of high-rise buildings and started the rapid urbanization after reform and openness occurred in

1979,  which leads to the exposure indicator (total sown area of crops)  showing a continuous decreasing trend (Fig. 6). In

1992, Deng Xiaoping delivered a famous speech during his inspection tour of south China. Afterwards, Shenzhen entered a

stage of high-speed development for a second moment, causing the proportion of agriculture to decrease sharply, so the total

sown area of crops simultaneously reduced by less than one half of the previous year. However, the indicator weight of the
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total sown area of crops was relatively large (Table 3), which directly led to a decrease of exposure of Shenzhen during the

same period.

     Although the growth rate of SI is the slowest, SI maintains an upward trend until 2000 to 2011 when the trend exhibits an

oblate form because the indicator of female proportion did not always increase with time. Instead, the indicator of female

proportion showed a significant decreasing trend firstly and then increased (Fig. 6). In the entire research period, SI is

smaller than EI (Fig. 5) because the total weight of sensitivity indicators is the smallest (Table 3).

3.2.3 Correlation between value of indicators and SVI

In Table 3, the weight of the indicators by benefit type and cost type is very proximate, accounting for approximately 50% of

the total weight. Collectively, RI is larger than the sum of  EI and SI. The statistical data corresponding to the resilience

indicators is generally larger than that of exposure and sensitivity after standardization. The indicator weight is positively

correlated with the dispersion of data, while the correlation coefficient between the indicator value and SVI can resemble an

influential degree for this indicator on social vulnerability. The first three indicators with the largest correlation coefficient

are determined as the number of medical and health institutions, urban fixed asset investments and annual average annual

salary of employees, respectively. After data standardization, the three indicators are compared with the SVI (Fig. 7), and it

is discovered that their trend is highly consistent. Three indicators that contribute to the greatest impact on  SVI are all

resilience indicators, indicating that social vulnerability for a region is more affected by its resilience while its exposure and

sensitivity  only  act  as  a  secondary  binding  role  under  the  same  development  level.  Moreover,  in  terms  of  the  social

vulnerability evaluation indicator system, the number of medical and health institutions are the most important resilience

indicators that greatly influence the regional vulnerability, which reflects the ability for the region to treat injured people

after a significant storm surge. The number of medical and health institutions reduced sharply in 1996 as the vulnerability

index reached a minimum, concurrently.

4 Conclusion

This research evaluates social vulnerability to storm surges in Shenzhen, China. Then, in accordance to the characteristics of

storm surges and the connotation of social vulnerability, the study establishes the indicator system for  social  vulnerability

evaluation respectively from three aspects: (i) exposure, (ii) sensitivity and (iii) resilience, based on the idea of rough set.

The final weighted SVI is rational and reliable by combining results from multiple evaluation methods, based on the idea of

combination weighting, in order for the results to objectively reflect the connotative information of social vulnerability in the

indicator system.

     The evaluation results show that the social vulnerability to storm surges in Shenzhen from 1986 to 2016 depicts a steady

downward trend, with relatively obvious interannual and interdecadal variation. The trend experiences four stages, from high
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social vulnerability to low social vulnerability, among which the period of relative high social vulnerability is the longest in

duration. When analyzing the reasons for social vulnerability changes from exposure, sensitivity and resilience, respectively,

it is revealed that an increase of exposure in the social economy and sensitivity of demographic and industrial structures are

less  than  disaster  resilience.  Therefore,  with  a  large  increase  in  resilience,  the  social  vulnerability  to storm surges in

Shenzhen  continues  to  decrease  while  the  capacity  to  withstand  disasters  and  response  to  disasters  has  significantly

increased.

     The three most relevant indicators of social vulnerability belong to resilience, which are the number of medical and health

institutions, urban fixed asset investments and the average annual salary of employees. In this study, it can be concluded that

enhancing residents'  income levels,  infrastructure enhancement and medical  and health conditions are  of  great  value  to

reduce social vulnerability.

     Reducing  social  vulnerability is as valuable as sustainable development, as society is  advancing and the economy

continues  to  grow.  The  situation  becomes  inevitable  as  assets  are  exposed  to  disasters  and  populations  vulnerable  to

substantial damage due to marine natural hazards are going to increase based on the theory of  social vulnerability. This

would lead to an increase in regional exposure and sensitivity. However, the general fiscal spending on public security of

high investments, the increase of the residents' income levels, the improvement of the infrastructure, and the improvement of

medical  and  health  conditions  are  positive  results  of  social  progress.  The  relatively  higher  these  indicators  reach,  the

relatively lower the possibility of damage to a region materializes, and the stronger the disaster flexibility.  This indicates that

the establishment of disaster prevention and reduction mechanisms for  storm surges should mainly start from improving

resilience  through  reasonably  arrangements  of  financial  expenditures,  improving  the  living  standard  of  residents  and

improving the infrastructure for disaster prevention. It is relatively difficult to reduce exposure and sensitivity, but the speed

of their growth can be controlled by reducing crop acreage in areas vulnerable to storm surges, managing fishery breeding

areas and the number of harbors, and selecting rational sites for residential areas and schools. In addition, the government

should energetically develop more science and technology avenues, improve the mechanisms of marine forecasting to carry

out real-time monitoring of future storm surges, closely monitor the tidal level changes at coastal tide stations, and issue

storm surge early warnings through radio, TV and Internet channels in a timely fashion. All departments should strengthen

communication and cooperation,  establish and  improve the response mechanisms to coastal  disasters,  and  improve the

emergency planning of storm surge incidents. After a coastal disaster occurs, governmental departments should conduct a

concise investigation, assessment  all  aspects of  the damage levels,  and provide completeness  in post-disaster repairs to

infrastructure.

     Assessment of social vulnerability to storm surges is an important basis for disaster preparation and reduction, as well as

to formulate marine policy for emergency planning operations. However, some indicators were not included in the final

evaluation system due to the lack of statistical data, such as insurance depth and housing values.  Additionally, the scale of

the  social  vulnerability  evaluation  at  the  municipal  level  cannot  be  substituted  for  the  vulnerability  differences  at

administrative units smaller than the municipal level, such as districts, towns and streets. As an extension to this research, the
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scale  of  the  evaluation  of  social  vulnerability  should  be  narrowed and  more  reasonable  indicators  should  be  selected

according to the local conditions.
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FIGURES

Figure 1: Mapped geographic features, shown at three scales: country wide (a), southeastern regional (b) and localized to the
economic center of Shenzhen, China (c), are presented as a source of reference. The study area (Shenzhen, China) is labeled
and outlined (crimson color) in Fig. 1c. The maps apply the Lambert Conformal Conic (LCC) projection due to the country’s
middle latitude presence and predominantly east-west expanse. The LCC projection offers flexibility in adjustable standard
parallels for plotting at different scales, where conformality is held true, angular distortion at any parallel (except for the
poles) is essentially zero and meridians are right angles (Snyder, 1987). The LCC projection emphasizes the conceptual
quality of secancy for conics and has been the conformal projection of choice for mid-latitudes (Pearson II, 1990).
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Figure 2: The rapid economic growth of Shenzhen, China from 1986–2016. The city’s regional GDP (black bar) and annual
GDP growth percentage (blue line), i.e., [(GDPi – GDPi - 1) / GDPi – 1] x 100% where i = year, are shown.
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Figure 3: Basic procedures in calculating SVI.
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Figure 4: SVI aggregated by the Entropy method (yellow line), TOPSIS method (green line) and Coefficient of variation
method (blue line), respectively. The weighted value of SVI is shown (thick red line).
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Figure 5: Variation of exposure index (EI), sensitivity index (SI) and resilience index (RI). SVI is illustrated in red.
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Figure 6: Normalized values of total area of crops and female proportion.
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Figure 7: Three most relevant indicators of social vulnerability during the research period. SVI is shown in red dots. Note,
the y-axis is partially visible to expand the lower portion of the plot.

30

900

905

910

915

920

https://doi.org/10.5194/nhess-2019-293
Preprint. Discussion started: 30 September 2019
c© Author(s) 2019. CC BY 4.0 License.



TABLES

Table 1: Indicator system of vulnerability of storm surges in Shenzhen, China.

31

Grade I 

indicators

Grade II indicators

Exposure

(+)

Permanent resident population at the end of the year   

(including household and non-household registration)
Regional GDP
Total area of crops 
Fishery output value 
Port cargo throughput 

Sensitivity 

(+)

Gross output value of primary industry
Female proportion 
Total enrollment of students
Total social workers at the end of the year

Resilience

(–)

General public budget expenditure
Per capital disposable income of urban residents
Urban fixed asset investment
Average annual salary of employees
Number of medical and health institutions
Number of beds in medical and health institutions
Number of health workers
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930

935

940

945
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Table 2: Combined weight coefficients of each single evaluation method.
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Entropy method TOPSIS method Coefficient of variation
method

combined weight
coefficient
（%）

42.75 25.10 32.15
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Table 3: Indicator weight and correlation coefficient of indicator values with SVI.

33

Grade I 
indicators

Grade II indicators Correlation
coefficient with

SVI (%)

Indicator weight
(%)

Exposure

(+)

Permanent resident 
population  (including 
household and non-
household registration)

–85.48 4.13 32.05

Regional GDP –95.11 9.49

Total area of crops 69.92 8.33

Fishery output value –40.88 3.26

Port cargo throughput –84.39 6.84

Sensitivity

(+)

Gross output value of 
primary industry

30.75 3.36 16.48

Female proportion 29.30 2.49

Total enrollment of students –89.55 6.17

Total social workers at the 
end of the year

–88.69 4.45

Resilience

(–)

General public budget 
expenditure

94.24 12.07 51.47

Per capital disposable 
income of urban residents

89.85 4.99

Urban fixed asset investment 96.31 8.00

Average annual salary of 
employees

95.24 6.59

Number of medical and 
health institutions

97.31 6.57

Number of beds in medical 
and health institutions

95.15 6.16

Number of health workers 95.07 7.09
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